Seleccione uno

o más idiomas


0,1,3
  • Alemán
  • Inglés
  • Chino
  • Español

Metalografía


La metalografía (también llamada materialografía) investiga las estructuras de materiales de manera cuantitativa y cualitativa, así como microscópica y macroscópicamente.

Para esto, existen diferentes métodos y dispositivos disponibles:

En un microscopio óptico, los haces de luz son reflejados en diferentes ángulos para hacer visible la estructura de la superficie de la muestra de material. Se puede usar la tecnología de campo oscuro (iluminación prácticamente paralela a la superficie) o un contraste de interferencia diferencial (luz polarizada) para incrementar la resolución, si es adecuado.

En un microscopio electrónico de escaneo, se emiten varios electrones secundarios de las microsuperficies de las muestras en un haz de electrones tramado.

Un microscopio electrónico de transmisión puede penetrar muestras con un haz de electrones enfocado altamente acelerado, siempre y cuando sean lo suficientemente delgadas. Durante este proceso, el haz de electrones es desviado/diseminado en los átomos del material.

En un microscopio ultrasónico, las ondas de sonido penetran el material con frecuencias varias. Las fases en el volumen de muestra también pueden ser representadas.

Las pruebas cuantitativas investigan varios parámetros:

El método de intercepción se usa para determinar el tamaño del grano basado en muestras estadísticamente representativas.

Los tamaños de los poros (fracciones de volumen de fase) pueden ser calculados y contados usando un molino de línea.

Metallografie


Die Metallografie (auch Materialografie) untersucht Werkstoffgefüge quantitativ und qualitativ sowie mikroskopisch und makroskopisch.

Für die Untersuchung stehen verschiedene Verfahren und Geräte zur Verfügung:

  • Im Lichtmikroskop werden Lichtstrahlen in verschiedenen Winkeln reflektiert, sodass die Oberflächenstruktur der Werkstoffprobe sichtbar wird. Ggfs. werden zur Erhöhung der Auflösung die sogenannte Dunkelfeldtechnik (Beleuchtung nahezu parallel zur Oberfläche) oder ein Differential-Interferenzkontrast (polarisiertes Licht) verwendet.
  • Im Raster-Elektronenmikroskop werden sogenannte Sekundärelektronen durch einen gerasterten Elektronenstrahl unterschiedlich stark aus den Mikroflächen der Proben emittiert.
  • Sofern die Proben dünn genug sind, können sie im Transmissions-Elektronenmikroskop mit einem fokussierten hochbeschleunigten Elektronenstrahl durchdrungen werden. Dabei wird der Elektronenstrahl an den Atomen des Werkstoffs abgelenkt bzw. gestreut.
  • In der Ultraschall-Mikroskopie durchdringen Schallwellen mit unterschiedlicher Frequenz das Material. Dabei können auch Phasen im Probenvolumen dargestellt werden.

Bei quantitativen Untersuchungen werden verschiedene Kennwerte untersucht:

  • Zur Korngrößenbestimmung werden statistisch repräsentative Proben im Linienschnittverfahren untersucht.
  • Die Porengrößen (Phasenvolumenanteile) können errechnet und mithilfe eines Linienrasters ausgezählt werden.

金相学


金相学(也称为材相学)是对材料结构从宏观层面和微观层面进行定量和定性研究的一门学科。

金相学中要用到许多不同的方法和设备:

光学显微镜中,光的光束从各个角度被反射形成材料样品表面结构的象。可以适当使用暗场技术(光照几乎平行于表面)或微分干涉差(偏振光)以增加分辨率。

扫描电子显微镜中,在光栅状电子束扫描下,样品的微观表面发射不同数量的二次电子。

透射电子显微镜中,经加速和聚集的电子束穿过样品的超薄切片。在此过程中,电子束与样品中的原子碰撞而改变方向,从而产生立体角散射。

超声显微镜中,声波以不同频率穿透材料。还可以确定取样容积中的相位。

定量试验测量了各种参数:

根据典型样品的统计数据,用截距法确定晶粒尺寸。

孔径(相体积分数)可通过网格线图来计算。

Búsqueda adicional


item


Descubra soluciones innovadoras para
la construcción de máquinas y la automatización.

A la página web